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THE DESIGN OF LOW ORDER CONTROLLERS
USING THE FROBENIUS-HANKEL NORM

Russell Allen Ramaker, Ph. D.
Department of Electrical Engineering

University of Illinois at Urbana-Champaign, 1990
William R. Perkins, Advisor

The problem of determining robust, low order controllers which achieve stability and

disturbance attenuation is considered. This is an important problem for the control of very

high order structures where a full order controller is inappropriate.

To address this problem, an approach using the Frobenius-Hankel (FH) norm is devel-

oped. The FH norm is shown to lead to attractive robustness and performance properties.

A parameter optimization method is developed which provides an iterative method for de-

termining the FH optimal parameters of a dynamic system using a gradient approach.

Two distinct controller design methods are presented which make use of the FH optimiza-

tion procedure. The first approach determines a controller which minimizes the FH norm of

the closed loop system. While the solution method is iterative, the procedure proves to be

straightforward to apply.

The second approach uses projective controls as a first step in the design. This allows

the designer to take advantage of the attractive features of projective controls. Design

parameters in the controllers are then determined by solving the FH optimization problem
I

called the "auxiliary minimization problem'

Examples of each approach are given, including a full design problem for the control of

a flexible structure using the projective controls approach. The resulting improvement in

the disurbaxice attenuation of the system using only second order controllers points to the

effectiveness of this design procedure.
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CHAPTER 1

INTRODUCTIONI
TChe design of low order controllers to achieve stability, attenuation of disturbances

and robustness to both modeling errors and parameter variation is an important design

problem in the control of many complex systems. This is particularly true in the control

of large flexible structures where factcrs related to cost, implementation, maintenance

3 and reliability may make a collection of low order, decentralized controllers the preferred

configuration.

3 The goal is thus to determine a robust, low order conlroller such that the closed loop

system is stable and has good performance. The crucial constraint dealt with in this work

3 is on the order of tae controller which, while not necessarily predetermined, is to be of order

significantly lower than the order of the system. However, the problem of determining the

3 best such controller under these restrictions is an open problem at present.

The general control problem considered in this work is illustrated in Figure 1.1: Given

3 the system P(s), determine a low order, possibly decentralized controller C(s) so that

the closed loop system has good performance and robustness properties. The constraints

on the order of the controller are usually dictated by limitations on the camputational

power of the processor which implements the controller. Decentialized controllers often

are cuctated when physical obstacles prohibit the availability of all the measurements at

3 one central location.

Classical control, which relies on root locus and Bode plots, uses a one-loop-at-a-time

3method to design controlers. This is quite inadequate for MIMO systems of high orier.

Thus, for complex systems, ;t is common to design controllers based on optimization

Ij

Figure 1.1: Gcneral control problem.



techniques. This approach allows complex controllers to be designed using a single criterion

of optimality. The difficulty, however, lies in choosing the correct criterion and computing

the resulting optimal control.

Considerable success has been realized in computing optimal controllers for norms such

as R"/2 (LQG) [12] and '"/o, [5]. In general, closed form solutions for the optimal controller

can be found in terms of the solution of Riccati equations. However, the optimal controller

in general is a centralized controller of order at least as high as the plant. In many cases

this is not practical. This is particularly true in the control of flexible systems where the

plant's inherent high order makes the use of such controllers unacceptable.

Unfortunately, the computation of low order and decentralized optimal controllers has

not been as successful as the full order centralized case. The computations of such con-

trollers are much harder to solve since at present, there are no direct methods of computing

the optimal controller as in the full order case and most methods of computing optimal

controllers are either iterative or yield suboptimal controllers.

A parametric approach to the problem is to parameterize the controller and then use

standard minimization techniques to optimize the parameters of the controller. Such meth-

ods have been extensively used in finding low order R 2 optimal controllers [13,31,11,14].

Difficulties with this approach include local minima and slow convergence. Also, this

method is difficult to apply in the R,, case due to the difficulty in directly computing the

norm.

A method for computing an optimal controller of fixed order which does not involve pa-

rameterizing the controller has been shown for the R"2 optimal case [9] and for the bounded

%,, norm case [3]. This approach has the advantage that the solution method is indepen-

dent of the controller realization. However, the computation of the optimal controller

involves the solution of two coupled Riccati equations and two Lyapunov equations. At

present, an efficient method of solving these matrix equations is unavailable which limits

its application for truly high order systems.

Because of the difficulty in computing optimal controllers, suboptimal methods are

quite common due to their relative ease of computation. However, in general, these meth-

ods will not always produce near optimal solutions and may in fact produce controllers
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which destabilize the closed loop system.

One common suboptimal method involves the use of model reduction. Model reduction

can be used to compute low order controllers in two distinct ways. One way is to approxi-

mate the plant model with a reduced order plant model and then to use a full order design

method to compute the resulting lower order controller. The other way is to first compute

the full order controller and then approximate the full order controller with a lower order

controller. These approaches are neither optimal nor guaranteed to be stable. However,

they can be significantly simpler to compute than the optimal solution. For an overview

of these methods, see [1].

As can be seen, no one method exists which produces optimal or near optimal low

order controllers in an efficient computational manner. In particular, no method exists

to compute low order "Hi,, optimal controllers which are attractive due to the robustness

properties of the norm.

This work develops the use of the Frobenius-Hankel norm as an optimization criterion

for the design of low order and decentralized controllers. This norm is established as a useful

norm for this task through the examination of its analytical and numerical properties. The

FH optimization approach is used in two different ways: First, to compute FH optimal

controllers directly, and second, by using it to solve the subproblem of determining the

free parameters of projective controllers. In both cases, the centralized and decentralized

controllcr cases are each examined.

The organization of this work is as follows: First, a review of system theory and norms

is given. Then the Frobenius-Hankel norm is introduced and its properties are explored. In

particular, its relationship to the 'H, and the 7"2 norm establish its robustness properties.

The following chapter develops necessary conditions for an optimal FH norm solution and

develops numerical methods to solve the optimization problem.

The next chapter investigates the computation of low order optimal controllers. Pre-

viously, no techniques existed for the computation of low order, 7", optimal controllers.

In this chapter, necessary conditions for the solution of the 7" optimal controller are

derived. However, computational problems exist in solving these conditions. This leads

to the consideration of the use of FH optimization as a means of determining low order
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controllers. The results of the previous chapter are applied to the optimal control problem

to determine necessary conditions for an optimal solution. The optimization procedure

of the previous chapter is demonstrated by calculating an FH optimal controller for an

example problem.

The use of projective controls is then investigated as a method of computing low order

controllers. Although this is not a new technique, there are a number of differences between

the published work and the presentation in this dissertation. The perspective here, is an

input/output approach rather than the traditional state space approach. In particular, a

number of input/output relationships are developed which give insight into the problem.

A simpler formulation of the proper controller case is given which eliminates the need to

transform the plant into a specific form. The FH optimization method is then applied to

the problem of determining the free parameters of the projective controllers. The following

chapter examines the case of decentralized projective controllers.

In order to demonstrate this approach, a design example using projective controls and

FH minimization to determine the free parameters is presented. The control problem

co isists of controlling tht 'qexible modes of a cruciform satellite structure. Using a 40-

state analysis model, two decentralized, second order controllers are determined which

attenuate the effect of the disturbance.

1.1 Notation

ln, Cn n-dimensional real and complex Euclidean spaces

AT, A* transpose and complex conjugate transpose of A E R'

Tr (A) trace of A E lZfl n , Def. 7

Ai(A) ith, largest and smallest eigenvalue of 4 E 1Zn, resp.

ai(A), &(A), _(A) ith, largest and smallest singular value of A E 7 nx-

-12 space of all stable, strictly proper transfer functions

?"W space of all stable, proper transfer functions

IG(s)112  norm of G(s) E 72, Def. 4

IJG(s)(7c, norm of G(s) E H-,, Def. 5

IIG(s)IIF Frobenius-Hankel norm of G(s) E 7-2, Def. 6
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aj(G(s)) zth Hankel singular value of G(s), Def. 3

6(t) Dirac delta function (impulse)

+[AB I transfer function, Def. 1

£[.], Y[.] Laplace and Fourier transform operators, resp.

I
I

I
U
U
I
I
I
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CHAPTER 2

.BACKGROUND

2.1 Representation of Dynamic Systems

A linear, time-invariant (LTI) system is usually represented in one of two equivalent

ways. The first involves expressing the input-output relationship of the system in terms

of first order differential equations. This is often called the state space representation of

the system because of the use of the state variable. The other way to represent the system

is through the Laplace transform of the impulse response of the system. This is called the

transfer function of the system.

While both are equivalent representations of an LTI system, each has its own strengths

and weaknesses as a system representation. In particular, the transfer function repre-

sentation works well to represent the output of the system as a function of the system

inputs. Thus, it emphasizes the input-output nature of the system. However, the transfer

function of the system is defined in terms of polynomials of a complex variable. Thus, it

poses computational problems for use in design and analysis. The state space approach

is useful because it can easily be defined in terms of real matrices. This makes the state

space system useful for computational purposes. Thus, it follows that it would be useful

to be able to use the compact notation of the transfer function while retaining the state

space representation for computational uses. The following notation is introduced for this

purpose.

Definition 1 Given the state space representation of the LTI system

i(t) = Ax(t) + Bw(t) (2.1)

z(t) = Cx(t) + Dw(t) (2.2)

where x E 7?n is the state, w E I"Z is the input, z E 7Zr is the output, the transfer function

of the system is denoted

B = C(sI - A)-'B + D. (2.3)
ClD
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Thus, through the use of the expression (2.3), the transfer function of the system is

represented in terms of a state space representation using a compact notation.

Fu2.1.1 Series connection

U Figure 2.1: Series connection.

Given two systems GI(s) and G 2 (S)

Gis)~ A B 1 G 2 s) 2 B2  (2.4)U [~C CD, J ' [ 2 D]
connected together in series as shown in Figure 2. 1, the resulting system can be represented

as
[A 2 B2C, B2D,

G2(s)GI(s) = 0 A, B, (2.5)

C 2 D2C D2D,

Note that this representation is not necessarily minimal.

1 2.1.2 Parallel connection

GI(s

Figure 2.2: Parallel connection.

I Given two systems GI(s) and G2(s) connected in parallel as in Figure 2.2, the resulting

3 system can be represented as

41 0 B

3 G,(s) + G 2(s) = 0 A2  B2  (2.6)

C, C2 D, + D 2
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Note that this representation is not necessarily minimal.

2.1.3 State space transformation

A state space transformation has no effect on the transfer function of a system. Thus,

given the state space transformation i = Tx where T is a nonsingular matrix,

G(s) = + ]B CT =1B (2.7)

This points out an important fact about state space representations of a system. That

is, they are not unique representations of a transfer function.

2.1.4 Minimal representation

The minimal representation of a system is one such that it has no uncontrollable or

unobservable states. If a system contains uncontrollable and unobservable states, it can

be reduced to its minimal representation by removing the uncontrollable and unobservable

states.

This can be easily done if the system has the following canonical form:

Aca A 12 A 13 A 14 Bc6

0 ACo A 23 A 24 Bco

G(s)= 0 0 Aeo A34 0 (2.8)

0 0 0 Aaa 0

0 Co Ca, 0 D

This system is equivalent to the following system

G(s) c [ B ] (2.9)

Cco D

Note that Ac6 represents dynamics which are controllable but not observable, Ao represents

dynamics which are both controllable and observable, A&o represents dynamics which are

observable but not controllable, and A& represents dynamics which are neither controllable

nor observable.
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S(S
Figure 2.3: Feedback connection.

2.2 Feedback Systems

Given the feedback system system shown in Figure 2.3 where the plant P(s) has the

state space representation

, = Ax + Bu + Gw (2.10)

z = Hx + Eu (2.11)

Y = Cx + Dw (2.12)

and x C j'R is the state, w E 7 q is the disturbance input, u E IZ. is the controlled input,

z E VZ is the controlled output, and y E 1?. is the measured output, the transfer function

P(s) such that

Z(S)= P(S) I (2.13)
y(8) u(8)

is given by

A GB

P(s) H 0 E (2.14)

LCID 0
Note that the control system described here assumes that the controlled outputs do not

contain a direct disturbance term and that the measured outputs do not contain a direct

control term. These assumptions, however, are not overly restrictive since they represent

common assumptions for control problems. Also, the omission of these terms does not

form a fundamental restriction, but rather one made for notational simplification.

If the system P(s) is controlled by

C(S) c Bc (2.15)
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so that

u(s) C(s)y(s) (2.16)

then the closed loop system is given by

A + BDcC BC,, G + BDD

G(s) = BC A BeD (2.17)

H + EDC EC, EDCD

This expression will be used repeatedly in this work since it represents the closed loop

dynamics of a general plant to a general controller.

2.3 Hankel Singular Values

The Hankel singular values and norms defined on Hankel singular values of a linear

system have been shown to have useful applications in model reduction [23,7], in providing

bounds for the 7,, norm [7], and in the design of low order controllers [24,19,27].

Definition 2 The controllability and observability grammians of a system G(s) E

W2 where

G(s) "=A (2.18)
C 0

are defined as, resp.

P 1j0 eAiBBTeAT tdt (2.19)

Q f j eATtCTCeAidt. (2.20)

The grammians of the system are the unique positive definite solutions to the Lyapunov

equations

AP + PAT + BBT =0 (2.21)

ATQ + QA + CTC =0. (2.22)

These equations form an efficient approach to solving for the grammians.

Definition 3 The Hankel singular values of G(s) E"2 are given by

a(G(s)) d [an,(pQ)],/2 (223)

where P and Q are the controllability and observability grammians of G(s).
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2.4 Norms of Dynamic Systems

The two most common norms used for dynamic systems are the 7"H2 norm and the 7-,

norm. These norms are reviewed here for reference in later chapters.

Definition 4 The 7 2 norm of G(s) E R"2 is defined as0 { 1 _ 1/,2
JIG(s)112 

-  Tr - f G(jw)-G(jw) d ] . (2.24)

The 'H2 norm is often called the "quadratic norm" due to its interpretation as the integral

of the square of the impulse response.

Theorem 1 Given G(s) E '"i2 and the impulse response g(t) = £-'[G(s)]

JIG(s)11 = Tr j g(t)T g(t) dt. (2.25)

The 1"12 norm can be computed from a state space representation of the system.

Theorem 2 Given G(s) E H2 and the controllability and observability grammians P and

JIG(s)jl1 = Tr {PCT C} = Tr {QBB T }. (2.26)

The 7,, norm is often considered a "worst-case" norm and as such has applications to

robustness issues since it can be used to bound the performance of a system.

Definition 5 The R"0 norm of G(s) E R,. is defined as

IIG(s)100 zx sup&[G(j w)]. (2.27)

The h... norm is the equivalent to the maximum gain of the system as shown in the

following theorem.

Theorem 3 Given G(s) E 7"i00

IG(s)Ik. = sup 112 (2.28)
W*O IIWI12

where z(t) is the response of G(s) to the input w(t).
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This theorem is an important robustness result since it states that if a bound is known on

the norm of the input, a bound can be calculated for the norm of the output.

The computation of the '7,, norm is a difficult problem since it cannot be computed

directly. However, an upper bound for the '"o norm can be computed as follows [4,5]:

Theorem 4 Given G(s) E Xv such that

G(s)= B (2.29)
C D

and -t > &(D). Then JIG(s)IIoo < y iff H has no imaginary eigenvalues where

H - [A + BR - DTC y-2BR-BT 1
_C TS-C -A T - CTDR-IBT (2.30)

and R - I- - 2DTD and S ! I- y-2DDT.

For the case where the system is strictly proper, the theorem can be simplified as follows:

Theorem 5 Given G(s) E R"2 such that

G(s) = [A ] (2.31)

Then JIG(s)ll. < - iff H has no imaginary eigenvalues where

H [ A -.y-2 BBT] (232

[_CTC -AT (232

Equivalently, IIG(s)Ikc < / if and only if there exists an X > 0 which satisfies the Riccati

equation

ATX + XA + Y-2XBBTX + CTC = 0. (2.33)

Thus, the ",, norm of a system can be computed in an iterative way by applying

a search algorithm to the problem of finding the smallest -y which satisfies the bound

-IG(s)Iko < y. This 7 is the 7oo norm of the system.
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CHAPTER 3

THE FROBENIUS-HANKEL NORM

Recently, Medanic and Perkins introduced the Frobenius-Hankel (FH) norm for the

design of control systems [171. The FH norm is defined as the Frobenius norm on the

Hankel singular values. The motivation for its use stems from its relationship to more

widely known norms such as ?12 and R,,. and its good computational properties which

3 make it suitable for use in optimization procedures.

In this chapter, the Frobenius-Hankel norm is defined and its properties explored. In

5 particular, both a time-domain and frequency-domain physical interpretation will made

of the meaning of the FH norm and a simple computational method will be shown for

calculating the FH norm. The FH norm will also be directly related to both the h 2 and

... norms.

In the following chapters the FH norm will be used as the basis for a parameter op-

timization problem and applied to a model reduction problem and the low order optimal

3 controller problem.

Definition 6 The Frobenius-Hankel norm of G(s) E 12 is

IIG(s)IIF 7 [ (G(s))] 1/2 (3.1)

3.1 Properties of the FH Norm

The FH norm can be easily computed directly from the grammians P and Q.

Theorem 6 Given the system G(s) E hW2 and the controllability and observability gram-

3 mians P and Q resp., then

IIG(s)II' - Tr {PQ}. (3.2)

I Proof: From Definition 6,

IIG(s)II ' = Tr E' (3.3)
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where E = diag(al ...a,,). Since there exists T nonsingular such that T-TPT-i = F and

TQTT = E [7]

[IG(s)I I' = Tr (T- T T T )Z(TT-')E (34)

= Tr (TT T)(T-'ET -T) (3.5)

= Tr PQ. (3.6)

U

Note that this expression involves the solution of two Lyapunov equations but avoids

computation of the Hankel singular values. This expression for the FH norm is important

because the trace function is more well-behaved than the singular value function.

3.1.1 'lime-domain propert 's

A time-domain interpretation of the Frobenius-Hankel norm is as follows:

Theorem 7 Given the system G(s) E 1 2 and the impulse response of the system g(t),

then
IIG(s)112 = Tr j t g(t) T g(t)dt. (3.7)

Proof: From Theorem 6,

jjG(s)]j = Tr PQ. (3.8)

From Definition 3,

Tr PQ = lim Tr [ eAtBBTeAT t dt [ eA TrCTCeA' dr (3.9)

which is equivalent to

Tr PQ = l1 imTr IT fT [CeA(t+T)BJ [CeA ("+)B] T dt d7. (3.10)T.-..-0oo

Let g(r) = CeArB,

TrPQ= lim Tr jj g(t + T)Tg(t + T) dt dr (3.11)

Tr PQ = lim Tr fTjT+i g(t)Tg(t) dt dr (3.12)
T.-oo
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Let H(r) ' ff+rg(t)Tg(t)dt. T
Tr PQ = lim Tr B-(r) dr. (3.13)T-o 1o

Integrating by parts,

Tr PQ = lim Tr H(r)O- r dH(r) (3.14)

Tr I Q = lim Tr [I (T - t)g(t + T)Tg(t + T) + tg(t)Tg(t) dt . (3.15)

In the limit as T -.* 00, g(t + T) --0 0, thus

Tr PQ = Tr fo tg(t)Tg(t) dt. (3.16)

,

Note the similarity of this expression to the one given in Theorem 1. In fact, a comparison

of the two expressions shows that the FH norm is in fact equivalent to a time-weighted H2

norm. The weighting factor t acts to weight relatively more heavily the impulse response

at later times than at earlier times. Thus, large initial responses are weighted less, but

lightly damped dynamics are weighted more.

3.1.2 Frequency-domain properties

Theorem 8 Given the system G(s) E t2 and the frequency response of the system G(jw) =

G(s)I,=,,,, then
1 1 dG(jw)

IIG(s)ItF = 2Tr ] dw G(jw)dw. (3.17)

Proof: Applying Parseval's Theorem to (3.7) yields

IIG(s)- F -Tr L .F[tg(t)].F~g(t)]* dw (3.18)

-- Tr O_ j(dG()J G(jw) dw (3.19)
27r J-0& dw

Note that the this expression shows that there are two components to the FH norm. The

first component comes from the dG(j,) term in the above expression which implies that the

FH norm weights the "flatness" of the transfer functions. The second component is due

to the G(jw) term in the above expression which implies that the FH norm also weights

the magnitude of the transfer function.

0
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3.2 Relationships with Other Norms

Although a physical interpretation has been given for the Frobenius-Hankel norm,

relating it to familiar norms is useful in providing further motivation.

The Frobenius-Hankel norm can be related to the 70, norm through the Hankel singular

values of the system. In the following two theorems, expressions are shown which relate

the two norms using the Hankel singular values.

This first result defines an interval in which both the %"oQ and FH norm must lie. Thus,

results which apply to the %,o norm can be applied to the FH norm through this result.

Theorem 9 Given G(s) E H2,

&(G(s)) _< IIG(s)ico _ 2Z,(G(s)) (3.20)
i=1

TI

(G(s)) < JIG(s)IIF 5 ai(G(s)). (3.21)

Proof: The first expression has been shown in [6] and [7]. To show the second expression,

begin first with the upper bound.

E E (ET~ (3.22)

= E 0oa' (3.23)
i=1 j=I

= 2a + aiaT (3.24)
k=l ,=-I~

ii

k=1

The lower bound follows directly from
fT

IG(s) 112 = 2 > . (3.26)

Using the results of the previous theorem, the N, norm can be bounded in terms of

the FH norm. This gives a measure of the "closeness" of the H,, norm to the FH norm.

Theorem 10 Given G(s) E "12,

11IG(s)IIF < IIG(s)I. ___ 2v/11G(s)lp •  (3.27)

-- n
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Proof: To show the lower bound, first note that

<' _ nd'. (3.28)

Then it follows from (3.20) that Z=(

IIG(s)Ilo d> --- IIG(s)IIF (3.29)

which proves the lower bound. To show the upper bound, note thatI
E T (3.30)

=where [ 2 E.. T .The Frobenius norm of a matrix

iis defined as

IIXIIF,. - [Tr AT A]'/2. (3.31)

I Since the Frobenius norm is a valid matrix norm

* IIETEIIF, <_ IIET IIFrII-IIF,. (3.32)

- [Tr TE]) '[Tr 2Tz,]/ 2  (3.33)

* = v'llG(s)IIF. (3.34)

However, since E T is a positive valued scalar,

Thus, IIETE IF, = ETE. (3.35)

n

*a :5 < V"IIG(s)IIF. (3.36)
i=1

Substituting into (3.20) yields the upper bound. U

I These expressions establish the robustness properties of the FH norm through the Ro

norm. Thus, since the computation of the FH norm is much simpler, one rat~onale for the

* use of the FH norm is established.

The Frobenius-Hankel norm can also be related to the sensitivity of the R2 norm to a

shift of the eigenvalues of the system along the real axis. Such a shift in the eigenvalues

3 can be represented by letting A be given by

A(a) = Ao + aL. (3.37)
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Thus, A(A) = \(A,) + a and the sensitivity of the 7"H2 norm to a shift in the eigenvalues

along the real axis is given by -LIG(s)12. The following theorem relates this sensitivity to

the FH norm.

Theorem 11 Let the eigenvalues of the system G(s) E 'H2 be given by A, = A, -a, then

-IG(sI21 C= 21IG(s)t' (3.38)

Proof: Let

.1 JIG(s)lll = Tr PCTC (3.39)

where

AP + PAT + BBT = 0. (3.40)

Then
dJ = Tr PCTC (3.41)

da

where Po. = satisfies

AP, + PAT T +2P = 0. (3.42)

Let Q satisfy

QA+A TQ + CTC = 0. (3.43)

Then, using the properties of the trace, it can be shown that

Tr PC T C = 2Tr PQ. (3.44)

Thus
dJ

= 2Tr PQ. (3.45)

This expression establishes the FH norm as a sensitivity measure for the 7H2 norm with

respect to a change in the relative stability of the system. This is an important relationship

since in flexible structures problems, often the damping of the system is not known well.

Also, a change in the relative stability of a lightly damped structure is the variation most

likely to cause instability.
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CHAPTER 4

FROBENIUS-HANKEL NORM OPTIMIZATION

I
In this chapter a common framework for solving optimal FH norm problems will be

presented. In later chapters, specific problems will be solved under this framework.

The general problem to be solved is: given a parameterized system, find the set of

parameters which minimize the FH norm of the system. The first section involves finding

necessary conditions for such a set of optimal parameters. Solutions to these necessary

I conditions are explored in the following sections. The final section applies the general FH

optimization problem to the problem of FH optimal model reduction.

4.1 The FH Optimization ProblemI
The FH optimization problem is: Let the parameterized system G(s) E -(2 be given by

G(s) A [ ( (4.1)
C( 0

I where is the parameter matrix. The FH norm of G(s) can be computed as

* J = {G(s)fI~~ = Tr {PQ} (4.2)

where P and Q satisfy

U = AP + PA T + BBT (4.3)

I 0 = ATQ + QA + CTC. (4.4)

The optimization problem is thus, find such that the criterion (4.2) is minimized subject

to the constraints (4.3)-(4.4).

4.2 General Solution Methods

I This constrained optimization problem can be converted to an unconstrained optiniza-

tion problem using Lagrange multipliers. The augmented criterion is given by

J = Tr {PQ + L(AP + PAT + BBT) + M(ATQ + QA + CTC)}. (4.5)I
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Using this approach, necessary conditions for an optimal solution are

0 _ATL + LA + Q =0 (4.6)
aP
a- =AM+MAT + P = 0 (4.7)
ao
-= AP + PA T + BB T =0 (4.8)
L

21. ._ATQ+QA+ CTC= 0 (4.9)
am

a -Tr {2AT(LP + QM) + BTLB + CTCM} 0. (4.10)

In general these equations can not be solved for the optimal directly. However, iterative

methods may be applied to this problem.

4.2.1 A steepest descent approach

A steepest descent approach to this problem is to find the direction of steepest descent

and to take a step in that direction. The direction of steepest descent is in the direction

of the gradient wrt . The gradient of J wrt to is given by

V a, aP dP 0,Q ,O dL W dM (4.11)_ = + -' - --d + 5 -- - + -- -- + (.1

If P, Q, L, M satisfy (4.6)-(4.9), then

d aJ (4.12)

The parameter update is given by

dJ{+1 = i- ' ' (4.13)

This method was is illustrated in Figure 4.1 and used in [27] to solve the FH optimization

subproblem.

4.2.2 Riccati equation approach

The Riccati approach [24] uses Riccati equations instead of Lyapunov equations. The

Riccati equations aie constructed so that the iterative solution converges to the solution
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1. Select o so that A( o) is stable.

2. Let i = 1.

3. Solve Eqs. (4.6)-(4.9) for L. M, P and Q.

4. Calculate j+j from Eqs. (4.12) and (4.13).

I 5. If the parameters have not converged, let i = i + 1 and go to 2.

I Figure 4.1: Steepest descent algorithm.

of the Lyapunov equations. The advantage of this approach is that the equations can

be solved for all systems, stable or unstable. Thus, an initial stabilizing controller is not

needed. However, the drawback to this approach lies in the fast that Piccati equations are

l computationally much more time-consuming to solve than Lyapunov equations.

The iterative equations are

ATLj+i + L,+1 A - Li+1RLi+l + LiRL, + Q = 0 (4.14)

AM.+, + M,+1 AT - Mi+RMi+l + MiRMi + P = 0 (4.15)

AP~i + P+ 1AT - P,+IRPi+i + PRP + BBT = 0 (4.16)

I ATQi+l + Qi+,A - Qi+1RQi+l + QjRQ, + CTC =0 (4.17)

3 where & is the solution of
= 0. (4.18)

I Note that if this iterative algorithm converges, it converges to the solution of the corre-

sponding Lyapunov equations. Thus. a solution of these equations satisfies the necessary

I conditions for an optimal solution.

1 4.3 FH Optimal Model Reduction

The model reduction problem is an important one since it is often necessary to approxi-

mate a high order model with a lower order model. The use of a lower order approximation
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-- -G (s)

Figure 4.2: Model reduction problem.

makes design and analysis simpler although with a less accurate model.

The model reduction problem is as follows: Given an n-th order system

G(s) = ] (4.19)C D

find a k-th order approximation

G(S)= [ B (4.20)

that minimizes the FH norm of the error JIG(s) - ()IIV.

The error system as illustrated in Figure 4.2 is

BeB
G(s)- 6(s)= B (4.21)

Gc5)~G+s)=E C:= -0 D-D
Note that the parameters of the error system are simply the matrices that define the

reduced order model. Thus,

= " f. (4.22)

In order to apply the results for FH optimization, the system to be optimized must be

strictly proper. Thus, for the case of model reduction, the error system must be strictly

proper. This is satisfied if and only if De = 0. Thus,

b = D. (4.23)

In order to simplify the solution of this problem, note that the matrices which define

the error system can be written as a linear function of the parameters . Thus,

Ae= 0 0]+ =] [A .1k 0V4o + T T (4.24)0 A 0 0 0 b o ol
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B = + = B, + T=B (4.25)B O0 0 b I,,

cI= 0 C I+ I0-T A P D k 0 C, I DC I& (4.27)

3 matrix.

The necessary conditions from (4.6)-(4.9) are

De = A + PA T + B B T  0 (4.28)

Thi S ral ipiistencsaycniin ince the parameters are given by (42) (4.0)becme*i AT Q + QA, + c C, 0 (4.29)

-i A,M + MA T + P =-0. (4.31)

Since the parameters are given by (4.22), (4.10) becomes

= 2(T(LP + QM)T + TLBBT + cTC, MT 0. (4.32)

3 The FH optimal model reduction could thus be solved by applying one of the methods

discussed in the previous sections.1
U
I
I
I
I
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CHAPTER 5

THE ?i.. AND FH OPTIMAL CONTROLLER

In this chapter, two methods of computing low order optimal controllers are developed.

First, necessary conditions for an 7 ,0 optimal controller are derived. These represent new

results in the determination of low order 'H00 optimal controllers. However, computational

problems make this approach difficult.

The second method developed is FH optimal control. This method is chosen due to its

robustness properties as shown in Chapter 3 and its good numerical properties.

5.1 The 70 Optimal Output Feedback Controller

The u: of the 74, norm is motivated by robustness concerns. The 0 norm of a

system describes the maximum gain from input to output of the system. Thus, it gives

the "worst-case" performance of the system. This is very useful particularly when very

little is know about the input signal. The h... norm also is useful since it can be used to

guarantee stability of the system despite uncertainty in the model of the system.

This problem has been solved for the state feedback and full order feedback cases [5].

Also, sufficient conditions for computing a low order controller which satisfies an upper

bound on the 7.O norm of the system have been shown [3,2]. The goal of this chapter is

to determine necessary conditions for the solution of the 4,, optimal control problem.

The h... optimal control problem is as follows: Given the plant P(s), determine the

controller C(s) which minimizes the 74, norm of the closed loop system G(s).

Let the plant have the form

P(s)= H 0 E (5.1)

C 0 0

where the controlled outputs have no cross terms, i.e.,

0 R
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The controller is assumed to be a static controller. Thus,

C(s) = K. (5.3)

The closed loop system then is

[A+BKC G] [A
G(s) . (5.4)

H+EKC 0 C

5.1.1 State feedback controllers

The problem of determining the HOO optimal controller in the case of state feedback

(C = I) has been shown in [5]. The results are repeated here for comparison with the

following section.

Theorem 12 The N,,, bound flG(s)j], < - if and only if there exists M > 0 such that

ATM + MA + Q + 7- 2MGGT M - MBR-BTM = 0. (5.5)

If such an M exists, then one controller which satisfies the If, bound is

C(s) = K (5.6)

where

K = -R-BTM. (5.7)

Note that the conditions in the theorem are necessary and sufficient. Thus, the controller

which corresponds to the smallest - which satisfies the conditions of the theorem is the IH0

optimal controller. Thus, the state feedback W,, optimal control problem can be solved

by using a search algorithm on 7 to determine the minimum.

5.1.2 Output feedback controllers

The case for the case of output feedback controllers is not as simple. This thesis

represents the first work on H,, optimal output feedback controllers. Previous work focused

only on sufficient conditions for an Hoo bound to hold.

From Theorem 5, the bound [IG(s)IIoo < -f holds iff there exists M > 0 such that

ATM + MA + Y- 2MBBTM + OTO = 0. (5.8)
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Thus, the W",, optimal control problem reduces to the constrained minimization prob-

lem

inf J =2 (5.9)
K

subject to (5.8) and M > 0.

Using Lagrange multipliers, the equivalent unconstrained minimization problem is

n

inf j =72 + Tr L(ATM + MA + 7- 2MBBf3TM + CTC) + n nA,(M). (5.10)
K i

The necessary conditions for an optimal solution are the Kuhn-Tucker conditions given

by

n,,(M) = 0, n, > 0 (5.11)

and

J= (A + -- 2BTM)L + L(A + Y- 2BbTM)T + XNX-1 =0 (5.12)

-= ATM + MA +,Y_ 2MbfTM + eTe =0 (5.13)
OL
ai = 2RBTMLCT + 2KCLCT =0 (5.14)aK

= 1 - f-4Tr LMGG T M == 0 (5.15)

where N diag{n} and X satisfies MX = XA with A diag{Ai(M)},

The controller parameter K can be eliminated by introducing the projection matrix r.

From (5.14),

K = -R - BTMLCT(CLCT) - l. (5.16)

Then (5.13) becomes

ATM + MA + _- 2 MGGTM + Q - MBR-IBTM + rTMBR-BTMr = 0 (5.17)

where

r = LCT(CLCT)-IC (518)

rk = I - r. (5.19)

From (5.15), an expression for 7 may be derived:

72 = (Tr LMGGTM] . (5.20)
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However, this expression is not useful for determining the optimal -y since L cannot be

determined uniquely. Note that if L = Lo is a solution to (5.12), then L = aLo is also

a solution. Thus, the optimal controller is the controller associated with the minimum Y

such that the necessary conditions have a solution.

Note that from this expression one can conclude that if the minimum f is non-zero,

then L # 0. But from (5.12), this is only possible if A+-Y2 MGGTM has purely imaginary

eigenvalues or M becomes indefinite. Thus, the minimal - can be found by reducing the

value of -/ until one of the stopping conditions is violated. The stopping conditions are

1. A + - 2MGGTM has no purely imaginary eigenvalues

2. M>)

In the state feedback case, C is full rank and thus r = I. This decouples (5.13) and

(5.12). Thus (5.13) becomes

ATM + MA + Y-2MGGTM + Q - MBR-1BTM = 0. (5.21)

3 Note that this agrees with the results for the state feedback case given in [5].

One possible algorithm for solving this problem is given in Figure 5.1. This algorithm

3 has proved to have slow convergence properties which become more acute as the minimum

is approached. However, efficient algorithms for the solution of these equations will require

* additional investigation beyond the scope of this work.

1 5.2 The FH Optimal Controller

3 This section derives the necessary conditions for an FH optimal controller. Note that

the assumption of the use of a time-invariant controller is in itself a restriction. Appendix B

shows that the unconstrained controller is a time-varying controller. Thus, the assumption

of a time-invariant controller is in itself a constraint and results in a higher FH norm than

3 in the unconstrained case.

The FH optimal control problem is as follows: Given the plant P(S) determine the

I controller C(s) which minimizes the R,, norm of the closed loop system G(s).
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1. Let r = I, =o.

2. Find smallest -y such that (5.17) has a solution.

3. Solve for L from (5.12).

4. Iteratively solve (5.17) and (5.18)-(5.19) for r and M.

5. Go to 2.

Figure 5.1: An 7"oQ optimal controller algorithm

Let the plant have the form

P(s)= H 0 E (5.22)

CID 0

The controller is assumed to be a p-th order dynamic controller. Thus,

C(s)= [ B] (5.23)

The closed-loop system is

+AB' A +BDC BC, G +BDD

G(s) _ _ BC A, BD (5.24)C D
H + EDC EC, EDCD

The parameters of the closed loop system are the matrices that define the controller. Thus,

[ Bc ] . (5.25)

In order to simplify the notation, the following expressions are used:

A = A + b/ (5.26)
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G+ BD (5.27)

S-- H+ kc' (5.28)

b =- EO (5.29)

where

I~ B=[ II)

0 A LO0B 0 C

In order for the closed-loop system to be strictly' proper it is required that .D = 0.

Thus, one condition for the optimal solution is
3 EDC = 0. (5.31)

The necessary conditions for an optimal solution from (4.6)-(4.9) are

=Ap+pAT +!T = 0 (5.32)
L

___ =ATQ+QA+C TC = 0 (5.33)

I j, L + LA + Q =0 (5.34)

aji _AM+ MA T + P = 0 (5.35)| OQ
Equation (4.10) becomes

S= 2[B T (LP +QM)C T + b T L(G + b}b)bT + r(ft + e jj)MCfl. (5.36)

If, in addition, the controller is non-dynamic, i.e., C(s) = Dc, then the closed loop

system is

G(s) A [ A BD~c G] (5.37)

H + EDC 0 = DJ

3 The necessary conditions for an optimal control reduce to (5.32)-(5.35) and

a]
3 D 2[B(LP + QM)CT + BTI(G + BDD)DT + ET(H + EDC)C T ]" (5.38)

Satisfying the condition EDCD = 0 leads to three special cases:I
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C2(s)

Figure 5.2: Plant with decentralized controllers

1. Noise-Free Measurements (D = 0)

2. Cheap Control (E = 0)

3. Strictly Proper Controller (D, = 0)

If the measured outputs of the plant do not contain a direct feedthrough term for the

disturbance, then D = 0. This is referred to as the "noise-free" case since the measured

outputs are considered to be uncorrupted by any disturbance. If the controlled outputs

of the plant do not include a control term, then E = 0. This is referred to as the "cheap

control" case since the application of large amounts of control energy is not reflected in

the controlled outputs. If the measured outputs include a non-singular noise term (DDT)

and the controlled outputs include a non-singular control term (ETE), then D, = 0. In

this case, the resulting controller is strictly proper.

Of course (5.31) can be satisfied in a combination of these three cases. This would

imply that some channels of the control would be strictly proper, some noise-free and

some with cheap control.

5.3 FH Optimal Decentralized Controllers

The decentralized control problem shown in Figure 5.2 arises when all the controls and

measurements are not available at one central location. Thus, each separate channel has

a separate controller which works with the available measurements and controls.

The FH optimal decentralized control problem is: Given a system P(s) whose measure-

ments and controls have been decentralized into 1-channels controlled by I decentralized,
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dynamic controllers, find the 1 controllers Ci(s) which minimize the Frobenius-Hankel norm

of the closed loop system G(s).

Assume P(s) has the form

A G B, ... B

H 0 El ... Et

P(s)= C1 1 0 ... 0 (5.39)

Ct D 0 ... 0

and the I controllers are given by

Cs(s) (5.40)

The solution to this problem is to reformulate it in terms of the centralized control prob-

lem. Thus, define the centralized controller C(s) in terms of the decentralized controllers

Ci(s).

Ci(s) 0 cB
C(S) B (5.41)

o c(s) [:D]
where

AC = diag(Acl,..., Act) (5.42)

Bc = diag(Bcl,,..., BcI) (5.43)

Cc = diag(Ccl,..., Cc,) (5.44)

Dc = diag(Dcl,..., Dc). (5.45)

Also, let

C1] D,

C D= (5.46)

C( D7

B=[B, A. t (5.47)
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E=[E . E,]. (5.48)

Thus, the decentralized optimal control problem is idctical to the centralized case

except that the parameters of the controller are constrained. Necessary conditions for an

optimal solution are thus (5.32)-(5.35) with the additional parameter constraints given by

(5.42)-(5.45).

5.4 Example

In order to demonstrate the computation of an FH optimal controller, an example

control problem is presented.

5.4.1 Problem definition

The optimization problem is: Given the plant

-0.4335 -0.0118 -0.9231 -0.4643 0.8854 -0.7382

-0.9160 -0.5185 -0.4110 -0.0779 0.1747 1.5473

-0.0414 -0.6085 -0.7507 -0.8901 -1.4939 0.8204P(s) - (5.49)
-0.4828 -0.0916 -0.2014 -0.9215 -1.1423 -1.5361

0.9782 1.9938 -0.8140 -0.8819 0 -1.5443

0.1821 0.3387 1.6250 1.0326 0 0

determine a second order, proper, stabilizing controller C(s) which minimizes the FH norm

of the closed loop system.

5.4.2 Controller optimization

To start the algorithm, an initial, non-zero, stabilizing controller is needed. Such a

controller is given by

-1 0 -0.0118

C(s) = 0 -1 -0.0555 (5.50)

0.0846 -0.1728 0
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Figure 5.3: Iteration history of FH norm of the system.

Using the Matlab routine given in Appendix C, the optimal controller was computed.

Figure 5.3 shows the FH norm at each iteration in the algorithm along with the 7"', bounds

of the system given in (3.20). In this example, the FH norm was reduced from its initial

value of 84.9 down to 5.6. and the upper bound on the 7,/, norm reduced from 240 down

to 20. The optimal controller is determined to be

-0.7966 -0.2337 -0.4563

C(s) = -0.2502 -0.7149 0.5331 (5.51)

0.4515 -0.5542 0.1822

The frequency response of both the open loop and closed loop systems is given in Figure

5.4. As can be seen, the Ho norm has been reduced from 55 to 5. Note that while the

7 "o bounds ;n this case were a bit conservative, FH optimization was quite effective in

reducing the f, norm of the system.
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Figure 5.4: Frequency response of open loop and optimal systems.
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CHAPTER 6

PROJECTIVE CONTROLLERS

The projective controls method [15,16] is a method for designing low order controllers

for higher order systems. This approach has been studied for a variety of approaches

[8,21,20,22,30,29]. The essence of the method is that it restricts the class of low order

controllers considered to the subclass of controllers that retain the dominant eigenvalues

and eigenstructure of a reference state feedback controlled system. Thus, given a reference

system with eigenvalues given by

\ref = A,1 U A,2  (6.1)

and the associated eigenstructure span{Xrl } and span{Xr1 }, the closed loop system under

projective controls has eigenvalues

Apo ,:- Arl U Ap2  (6.2)

and retains the eigensubspace span{Xi }, wire A, contains the retained eigenvalues from

(6.1) and Ap2 contains the remaining, i.e., residual eigenvalues of the closed loop system.

The family of controllers which achieve this are conveniently parameterized by a single free

parameter matrix of dimension p x r where r is the number of available measurements and

p is the order of the controller.

The retention of the eigenstructure as well as the eigenvalues of the reference system is

particularily important in disturbance attenuation since the orientation of the eigenspaces

influences the transfer function and system zeros. Thus, if the state feedback reference

solution is determined to provide disturbance attenuation, this is reflected in the eigen-

structure, and the retention of the eigenstructure together with the eigenvalues is an added

incentive to the use of projective controls in disturbance attenuation.

This effect of projective controls can be characterized through the transfer function of

the reference system. Let the transfer function from the disturbance input to the regulated

ouput for the state feedback controller reference system be given by G,(s). This transfer

function can be reduced to the series connection

G (s) = G, 1(s)G,2(s) (6.3)
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where GI(s) contains the dynamics of the reference system to be retained and G, 2(s)

contains the remaining dynamics. The corresponding transfer function under projective

controls can be reduced to the series connection

Gp(s) = G, 1(s)G 2(S) (6.4)

where G,7 (s) is called the retained subsystem since it contains the dynamics retained

from the reference system and Gp2(s) is called the residual subsystem. The order of

the retained subsystem is determined by the class of controller chosen. Once the order

and dynamics to be retained are chosen, the computation of the projective controller is

straightforward. Three classes of controllers are considered here: static, proper and strictly

proper controllers.

The reference system is determined by a state feedback controller which is chosen for

its desirable properties. Many algorithms exist for designing state feedback controllers,

thus the projective controls method is suitable for use in combination with many types

of synthesis methods. Moreover, once the state feedback controller is determined, the

projective controller is easily computed. However, stability and performance of the residual

dynamics are not guaranteed.

In the case of dynamic controllers, free parameters exist which may be used to im-

prove the performance of the residual subsystem. Section 6.5 addresses the problem of

determining the free parameters.

In this chapter, expressions are shown for the projective controllers, the closed loop

eigenvalues and the error between the reference system and the projective system.

6.1 The Reference System

A state feedback controller u = Kox applied to the plant yields the reference system

G,(s) = (6.5)H + EKo, 0

where F = A + BKo. The eigenstructure of the reference system is FX = XA where A

is a diagonal matrix of the eigenvalues of F, A(F) and X is a matrix of the associated

eigenvectors.
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One common design approach is LQ optimization. It has the desirable properties of

producing controllers which are guaranteed to be stable through the solution of a matrix

equation. In particular, the stabilizing controller which minimizes IIG(s)112 is given by

u = K 2x, K2 = -BTM 2  (6.6)

where M2 > 0 is the solution of the algebraic Riccati equation

ATM 2 + M 2A - M2BBTM 2 + HT H = 0. (6.7)

For details, see [12].

A stabilizing controller which guarantees JIG(s)<. :5 -y is given by

u = KOOx, KOO = -BT MOO (6.8)

providing there exists MOO > 0 which satisfies the algebraic Riccati equation

AT MOO + MOOA - MOOBBT M 0 + 12MOOGGTMOO + HT H = 0. (6.9)

For details, see [5).

6.2 Static Controllers

In this section, the static controller will be determined which retains the r reference

eigenvalues A,. and associated eigenvectors X, where r is the number of measured outputs.

Theorem 13 If A, is observable from C, then the unique static output feedback controller

which retains the r reference eigenvalues is given by

C(s) = D, (6.10)

where

DC= K.N (6.11)

N, !- X,(CX.)-' (6.12)

and X,. spans the eigenspace associated with the r reference eigenvalues A,.
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Proof: Since the feedback gain D, retains [A,., X,-]

AX,. (A + BDcC)X, = X,.A,. (6.13)

Also, note that

FX,. - (A + BKo)X,. = X,A,.. (6.14)

Subtracting the two equations yields

BDCCX,. = BK,,X,. (6.15)

Since A, is observable from C, CX is invertible. Thus,

DC = KoX,.(CX,.)-'. (6.16)

The eigenvalues of the closed loop system consist of the retained eigenvalues and the

residual eigenvalues. Note that the eigenvectors are also retained.

Theorem 14 The eigenvalues of the system are

k= A, U A(A,) (6.17)

where

A,. yT(I, - NoC)AY (6.18)

and Y E Znx(n-) is such that CY = 0 and yTy =I,_.

Proof: Let T be given by

Note that U and V exist provided that CX, is invertible which is guaranteed by the

observability of A,. Thus T is invertible since U and V exist.

T-'AcT= A, * (6.20)

A, = yT(i, - NoC)AY. (6.21)
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Gp(s)

Figure 6.1: Error system.

The following theorem forms the transfer function of the system represented by the

difference between the reference and the projective systems. This system is illustrated in

Figure 6.1.

Theorem 15 The transfer function of the error system E(s) Gr(s)- Gp(s) can be

expressed as

E(s) = (1 22)
H + EKo E KY 0

where G, - yT(I, - NoC)G.

I Proof: By definition, E(s) is given by

3 F 0 G]
E(s) 0 AC -G (6.23)

H + EKo H + EDcC 0

Applying the state space transformation,

3 To n T = 0 U (6.24)
0 Xr Y

E(s) is given by

3 F 0 -BKoY 0

0 A. UAY -UGE(s) = (6.25)
3 0 0 A. -VG

H + EKo 0 -EKoY 0



40

Removing the unobservable states yields

[ F -K, 0Y 01 F B A,. VG
E(s) 0 ' -VG J (6.26)

H +EKo -EKY 0 F E. A 0

6.3 Strictly Proper Controllers

In this section, the use of strictly proper controllers for projective controls is investi-

gated. It is shown that the use of strictly proper controllers introduces free parameters

which can be used to shape the residual dynamics.

The following theorem constructs the family of p-th order strictly proper controllers

which retain p reference eigenvalues and eigenvectors.

Theorem 16 The set of p-th order strictly proper controllers which retain p reference

eigenvalues and eigenvectors is given by

C(s)= C I (6.27)

where

A- AP - P CXP (6.28)

BC = P. (6.29)

Cc = KoXp, (6.30)

P E RP " is a free parameter matrix and Xp spans the eigenspace associated with the p

reference eigenvalues, AP.

Proof:

-B-C P ]I A[p (6.31)
BC A, WP WP

AWp + BcCXp =WpA (6.32)

A, = WpApWp- - BCXpWp7' (6.33)
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AC = Wp(hp- W;jBCX)WpT'. (6.34)
I Define P0  

= W jBC

3A = Wp(Ap- PoCXp)Wj' (6.35)

B: = WPPo. (6.36)

3 BCcWp + AXp = XAp (6.37)

BCCWp + AXp = (A + BKo)Xp (6.38)

I C Wp = K.Xp (6.39)

I Cc = KoX,,pW . (6.40)

Note that Wp represents a state space transformation of the controller and thus Wp is

3 arbitrary. Choose Wp = p, then

3 Ac = A,- PCX (6.41)

BC = P. (6.42)

ICc = KoXp. (6.43)

3 Theorem 17 The eigenvalues of the closed loop system are

k = A, U A(A,) (6.44)

where

3= A - XpPoC. (6.45)

3o f A A B C , (6.46)

Le 
BC Ac

Let

IXp In I lu (6.47)
= 14 0] In [
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T-1AT f A  A . (6.48)

A, = A- XpPoC (6.49)

Theorem 18 The transfer function of the error system E(s) G G,(s) - Gp(s) is given by

E(s) =. (6.50)
-H+ EKo E Ko 0

Proof:

F 0 0 -G

0 A BC, GE~s) =(6.51)

0 BC A, 0

H + EKo H EC, 0

Applying the state space transformation

In -xp -, In In .I 0
T°- 0 Xp In To ' '  0 0 Ip (6.52)

0 IP 0 1 -xpJ

yields

F 0 -BKo 0
0 Ap P0 C 0

E(s) 0 0(6.53)
0 0 A, G

H+EKo 0 -EKo 0

Removing the unobservable states yields

F -BK, 0  A
E(s) 0 Ar[H G][ . (6.54)

H + EKo E K,, 0H + EKo -EKo, 0
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6.4 Proper Controllers

In this section, the use of proper controllers (that is, dynamic cc,, trollers) for projective

controls is investigated. It is shown that the use of proper controllers allows more of the

reference dynamics to be retained and introduces free parameters which can be used to

shape the residual dynamics.

The following theorem constructs the family of p-th order proper controllers which

retain r + p reference eigenvalues and eigenvectors.

Theorem 19 The set of all p-th order proper controllers which retain r + p reference

eigenvalues and eigenvectors is given by

C(s)= [ ACB 1 (6.55)

where

AC = Ap + PoCFBo (6.56)

Bc = PoCF(No - BoPo) - ApP (6.57)

cc = KoBo (6.58)

D. = Ko(No - BoPo), (6.59)

Bo = (I- NoC)Xp, Po E RpXr is a free parameter matrix and X, and Xp span the refere,,re

eigenspaces associated with the reference eigenvalues, Ar and Ap.

Proof-

Acr, = X:kr (6.60)[ A+BDC BC, xP ]r [p r 0] (6.61)
B,C Ac Wp W 7 J WP W, 0 A 7 ]

AWp + BCXp = WpAp (6.62)

AcWr + BcCXr = WrAr (6.63)

BCJVp + (A + BDcC)Xp = XA p = (A + BKo)X, (6.64)

BCJVW + (A + BDC)Xr = XAr = (A + BKo)Xr (6.65)
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CcD, Cp X. -1XpKX

c Dc K0 Xp WAX W WI. (6.67)

[Ac BC] [WpA VXrllr][x

Define L - W, 1 W,

AB ppWLr W WpL (6.68)
Cc D ,X, KX, CXCX7 J

A, B, Wp I~o Ap LA. IF Ip L W-1 ol 6.9
Cc Dc] 0 , K,,Xp .Xx, ]cxP cx'J [0 I 6.9

Note that W, represents a state space transformation of the controller and thus, Wp is

arbitrary.

Ip1 L I [i + LA71 CXp -LA (.70

A CX,- - CXL. (6.71)

Define P,, - L(CX, - CXpL)-', then

A,= (CX,.f 1 (I. + CXPO). (6.72)

Ip L =[-C,)(I + PCX ) -CP.'(,+ CXPO) (.3
[CXP CX, ](x, Icp+PCXp ) 0 (6.73)Ir

Let WP = II + POCXP)

Cc Dc K0 Xp ., -(CX,.) 1 CXp (CX,y- 1 (I. + CXPp)

(6.74)[Ac B, Ap + PCF(XYp- N0,C X) POCF(NOCXp - Xp)PO, + POCFN, - ApP 0 ]

Cc D, KO,(Xp - NOCXp) KO(N,,CXp - Xp)P. + K0N0  J
(6.75)

A, B, A_ A+ PCFB, P0 CF(N,- B0 P.) - ApP0 1 (6.76)
jCc D, K0,B0 K.(NO - 110P,) J
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Theorem 20 The eigenvalues of the closed loop system are

AC= A U , U ,A(A,) (6.77)

where

A,.. - A. + BoPoCAY (6.78)

and Y E 1ZfX( ' -?) is such that CY = 0 and yTy =I,-_

Proof:
A + BDcC BCc1. (6.79)

[ BCC Ac]

Let

T (6.80)
+ PoCxp PoCX, 0

= I = (CX,)-'C(I, + XpPoC) -(CX,)- 1CX, (6.81)
yT + yT(BoP ° - No)C -yTBo

Ap 0 *

-1A:T= 0 A,. * (6.82)

0 0 A,

A, = yT(I, + (BoP - No)C)AY = A, + yTBoPoCAY. (6.83)

Theorem 21 The transfer function of the error system E(s) - G,(s) - Gp(s) is given by

E(s [ (6.84)
H + EKo E KY 0

Proof:
F 0 0 -G

0 A + BDC BC, G
E(s) =(6.85)

0 BcC A, 0

H + EKo H + EDcC ECc 0
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Applying the state space transformation

I. -XP -X, -Y

0 XP X, Y (6.86)

0 IP + PoCXP PoCX. 0

I. I. 0
_ , o -Poc iv 6.7

o (CX)-C(1 7 + XPPoC) -(CX)- 1CXp (6.87)

0 yT + yT(BoP _ No)C YTB

yields

F 0 0 -BKoY 0

0 AP 0 * *

E(s) 0 0 A, • • (6.88)

0 0 0 A, G, + yTBoPoCG

H + EK,, 0 0 -EKoY 0

Removing the unobservable states yields

F -BKoY 0

E(s) = 0 A,. G, + yTBoPoCG (6.89)

H +EK -EKoY 0

which is equivalent to

E(S) F ] G,.+ YTBP CG (6.90)
H +EKo E Ko 0

6.5 The Auxiliary Minimization Problem

The previous sections established projective controllers in terms of free parameters.

These free parameters affected the residual dynamics of the system and thus are an impor-

tant part of the design problem. However, no straightforward method exists for choosing

these parameters. In this section, an auxiliary minimization problem is formulated in order

to determine the free parameters of the dynamic projective controllers.
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The auxiliary minimization problem is as follows: Determine Po, such that IJE(s)I[F is

minimized.

Thus, it is natural to apply the results of Chapter 4 to determine the optimal parameters

Po. In the dynamic controller cases, E(s) is given by

E(s) = E,(s)E2 (s; P.). (6.91)

3l Note that E(s) is a system of order 2n. Thus, the auxiliary minimization problem is twice

the order of the original problem. Also, the structure of E(s) as shown in (6.91) cannot

3 be exploited to simplify the problem. These problems do not prevent the FH optimization

method from being solved and necessary conditions for an optimal solution can readily be

* found.

However, since E1 (s) is independent of Po, it acts only as a weighting factor and does not

3 influence the stability or the robustness properties of the system. Thus, as a computational

simplification, the auxiliary minimization problem is reduced to

mi 1E2(s)IIF. (6.92)

PO

Note that this is not the same as minimizing E(s) and in general will give a different

solution. However, it still represents minimizing a weighted sum of the error system E(s).

In the case of strictly proper projective controllers, E 2(s) is given by

E 2 (s) = -- ] (6.93)
K. 0 C' 0

Thus, the auxiliary minimization problem is to minimize over P,

J(Po) = Tr PQ, (6.94)

subject to the two Lyapunov equations which define the controllability grammian P and

the observability grammian Q:

AP + PAT + B BT = 0 (6.95)

ATQ + QA, + CTCT =0. (6.96)
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The necessary conditions for an optimal solution from Chapter 4 are (6.95)-(6.96) and

ATL + LA,- + Q = 0 (6.97)

A,M + MA r +P=O (6.98)

XT(LP + QM)CT =0 (6.99)

where M and L are Lagrange multipliers for the constraints (6.95)-(6.96).

The gradient of J with respect to P can be computed for arbitrary P as

dP _ _2XT(QL + MP)CT (6.100)d~o

where P, Q, L and M solve the Lyapunov equations (6.95)-(6.98).

Thus, a steepest descent algorithm can be implemented by iteratively solving

p0+l = p \d_ (6.101)

for the optimal P.

This method of determining free parameters is employed in the design example of

Chapter 8.
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CHAPTER 7

DECENTRALIZED PROJECTIVE CONTROLS

In this chapter, projective controls method for the case of decentralized controllers is

examined. Much of the work presented in this chapter is developed in [32,19,18]. As in

the centralized case, the presentation here focuses on a transfer function point of view.

In addition, a new formulation of the proper controller case is developed, which avoids

the requirement of transforming the plant into a specific form, and results for the case of

strictly proper controllers are introduced.

The main focus of this chapter is to show that the free parameters of the decentralized

projective controllers can be treated in a manner similar to the centralized case. Thus, FH

3 optimization is suitable for determining the free parameters of the controller. However, in

order to efficiently apply the FH norm minimization approach to the disturbance rejection

3 problem, a transformation developed in [321 will be applied to the system that reduces the

closed loop system to a form which is linear in the free parameters.

* Consider the system with I feedback channels

AG B1  ... B

HO0 0 ... 0

* P(s)= C 0 0 ... 0 (7.1)

3 C. 0 0 ... 0

The goal is to determine the I decentralized controllers C,(s) to achieve certain performance

* and robustness goals.

7.1 The Reference System

3 Given the I state feedback controllers ui = Koix, the reference system is given by

SG(s)=[ ] (7.2)

I
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where

F = A + Z BK . (7.3)
i=1

7.2 Static Controllers

For completeness, consider first the use of static output feedback.

Theorem 22 The I decentralized static controller which retains r reference eigenvalues is

given by

Ci(s) = K (7.4)

where

K, = KiN. (7.5)

No, = X,(CiXr) - 1  (7.6)

and X, spans the eigenspace associated with the r reference eigenvalues A,.

Proof:

AC = A + BIKIC1 + B 2K 2C 2. (7.7)

AX, = FX, = XA,. (7.8)

The transfer function of the closed loop system is

G(s) = [ H  (7.9)

where

AC = A + BiiC. (7.10)
i=1

Hence, with static controls, there is no freedom available for the next design phase within

the class of projective controls. This solution, however, serves as a foundation for expanding

the admissible controllers by allowing dynamic controllers of given order. The advantages

are twofold: more eigenvalues can be retained and free parameters are introduced to shape

the residual dynamics to achieve disturbance rejection. The proper controller and strictly

proper controller cases are treated seperately.
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7.3 Strictly Proper Dynamic Controllers

Theorem 23 The set of all i-channel, p-th order decentralized strictly proper controllers

3 which retain the p reference eigenvalues is given by

C(s)= + B (7.11)C6 0

3 where

Ad, = A - PClX, (7.12)

I B= P, (7.13)

Ci =KoiXp, (7.14)

Pi E RPXT are free parameter matrices and Xp spans the reference eigenspaces associated

3 with the p reference eigenvalues, Ap.

3 Proof: U

The transfer function of the closed loop system is then

3 A B1Ko1Xp B 2Ko2Xp G

G] A~.-P1 1X~ 0 . (7.15)

a] P2 C2  0 Ap - P2C2Xp 0

L H 0 0 0

Note that this system is linear in the free parameters. The freedom in the free pa-

3 rameters P1 and P2 can be used to shape the residual dynamics and, in the disturbance

attenuation problem, to shape the system's transfer function. This linear representation

3 (7.15) enables the efficient application of the FH norm approach.

3 7.4 Proper Controllers

Theorem 24 The set of all l.channel, p-th order, decentralized proper controllers which

retain r + p reference eigenvaluei is given by

I C(s)=[ c ] (7.16)

UI
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where

Aci = Ap + PCiFBo. (7.17)

B6 = PCF(N, - BoIP) - ApP, (7.18)

C6 = KjBoj (7.19)

Dd = Koj(N - B.Pj), (7.20)

B = (I - NOCi)Xp, P E RP" are free parameter matrices and X, and Xp span the

reference eigenspaces associated with the reference eigenvalues, A, and Ap.

The transfer function of the closed loop system is

Ad B 1 Ccj B 2C. 2 G

+ [ clG = B,1 C, Ac, 0 0[ I- (7.21)
H- B:2C2  0 A, 2  0

H 0 0 0

where

Ad = A, ± BD.1 C + B 2Dc2C 2. (7.22)

Transforming the closed loop system by the similarity transformation

I[ 00 I 00

T= PIC,1P 0 T -PIC, 1P 0 (7.23)

P22 Li _ PC 2 o0 (

yields

Ac BjCcj B2 CG2  G

G(s)= C] PIE, A + PG -PG 12  -PCIG (7.24)
H-I 0 P 2 E 2  P2 G 2 1  Ap + P 2 G 2 2 -P 2C 2G

H 0 0 0

where

E= C,(FN, C, - Ar) (7.25)

G, = CI(FBo, - BIC.:) (7.26)

G = -CiB.,Nd, i # j. (7.27)
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Thus, the expressions derived for A, G and H all exhibit a linear dependence on the free

parameter matrices P and P2. (H is in fact independent of the free parameter matrices.)

This linear dependence can now be utilized to determine suitable P and P2 (and thus the

dynamic controllers) to achieve disturbance attenuation by minimizing the FH norm.
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CHAPTER 8

A CONTROLLER DESIGN EXAMPLE

The methods presented in the previous chapters are now applied to the problem of

controlling a flexible structure. The problem explored in this design example is the im-

provement of the disturbance attenuation properties of a flexible structure using low order,

robust control.

The structure considered here is the cruciform-shaped structure shown in Figure 8.1.

Note that this is a realistic design problem since the plant model used in this design problem

is taken from an actual structure and the model has been verified experimentally [10]. In

addition, the structure exhibits many properties typical of flexible structures including

lightly damped modes, decentralized structure and multiple controls and measurements.

This structure has also been studied in [28] and [26].

The procedure used to design the controller is as follows. First, after determining that

the system exhibits weak coupling between its x-axis and y-axis dynamics, the problem is

separated into two parts: the design of the z-axis controller and the design of the y-axis

controller. Second, a reference state feedback controller is determined which achieves the

desired disturbance attenuation. Third, by selecting the proper modes to retain, the strictly

proper projective controller is determined. Fourth, the free parameters in the projective

controller are determined by applying FH optimization to solve the auxiliary minimization

problem. Finally, the properties of the resulting closed loop system are shown.

8.1 Description of the Structure

The structure considered is a 45-foot lattice-type, lightweight (5 lb), flexible beam with

fixed base and free tip shown in Figure 8.1 (101.

The control u E 2 consists of torques applied at the base of the structure about the

x and y axes. The disturbance w E V is generated by an x-y translation applied to the

base where the z-axis is taken to be the axis of the cruciform. Measurements of the system

y E VZ8 are obtained from an x-y axis gyro and accelerometer sensors located at the tip
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Figure 8.1: The cruciform structure.

and base of the structure. The controlled output z E V.4 is the position measurement at

the tip and base of the structure.

The system model was obtained by truncating the lowest 20 modes of the finite element

model. This results in a fortieth order state space model. The model parameters can be

found in Appendix D [101.

The cruciform structure was observed to exhibit significant decoupling between the x

and y axis dynamics. Thus, the design problem has been split into two parts: The x-axis

dynamics and the y-axis dynamics. The inputs and outputs of the structure are divided

as shown in Table D.1 in Appendix D. For more details see [26].

The x-axis plant model is obtained by applying a balanced model reduction on the

original system using only the x-axis inputs and outputs. The eigenvalues of the resulting

twelth order model are shown in Table 8.1 and show typical flexible structure properties,
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Table 8.1: Modes of the Cruciform Model.

Real Imaginary Frequency Damping

-4.2471e-03 ±8.4941e-01 S. '42e-01 5.00OOe-03

-3.4723e-02 ±7.0339e+00 7.0340e+00 4.9365e-03

-3.0800e-02 ±7.7296e+00 7.7297e+00 3.9846e-03

-1.9863e-01 ±1.0458e+01 I.0460e+O1 1.8989e-02

-5.1863e-01 ±2.5925e+O1 2.5930e+01 2.000le-02

-8.2976e-01 ±4.6092e+01 4.6100e+01 1.7999e-02

i.e., lightly damped and closely packed low frequency modes. The y-axis dynamics were

treated similarly but are not shown here.

Note that model reduction was used only to remove very weakly controllable and ob-

servable modes in order to avoid neglecting modes which may be important in the design

of the controller. This is possible since the projective controls method allows the use of a

high order model without requiring a high order controller.

6.2 Design of the Controller

The goal of this section is to design a controller which improves the disturbance atten-

uation of the structure. The measure of disturbance attenuation used here will be the "

norm since it represents the maximum gain of the system from disturbance to controlled

output. Thus, a system such that IG(.-III -y is said to have disturbance attenuation -.

From the frequency response shown in Figure 8.2, it can be seen that the open loop

system has a disturbance attenuation of y = -20 dB. In this example, the design goal will

be to improve the disturbance attenuation of the structure to Y=-40 dB using a low order,

robust controller. This will be done using the projective controls method.

The first step in designing a projective controller is to find a state feedback which solves

the disturbance attenu #on problem. This forms the reference system for the problem.

The following theore- [26] yields the desired controller.
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Theorem 25 Given a plant

o o (8.1)
Ioo

where there exists an a such that G = Ba and a state feedback controller C(s) = K where

K = -R-BTp (8.2)

and P satisfies the Riccati equation

I ATp + PA - ptTR-lBP + HTH = 0 (8.3)

Iwhere R satisfies

aTRa 2< - 2, (8.4)

I then the closed loop system satisfies the bound IIG(s)iII. < -y.

Making the approximation D ; Ba where a=0.56, Theorem 25 can now be applied

to yield the state feedback controller. The eigenvalues of the resulting closed loop system,

A(F), are given in Table 8.2. The frequency response of the reference system is shown in

Figure 8.3 and confirms that the disturbance attenuation of the reference system is / =

3 -40 dB. The robustness margins are [0, oc) for gain and ±90' for phase. Thus, this state

feedback forms an acceptable reference system for the projective controls method.

I First, a static projective controller is considered. Since there are r = 4 outputs, two

complex pair modes can be retained. However, experimentation with possible retained

modes does not yield any closed loop systems with the required disturbance attenuation.

Since no design freedom exists for the static projective case, nothing further can be done

in this case.

Since the static projective controls approach was inadequate, the strictly proper projec-

tive controls approach is now considered. Using a second order (p = 2) controller (higher

order controllers can be considered later if this is inadequate), one complex reference mode

pair can be retained. Referring to Figure 8.3, it is apparent that the lowest frequency

mode of the reference system is the most important in retaining disturbance attenuation.

This is the mode labeled "a" in Table 8.2. Thus, choose the retained mode to be \. = {a}.I
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Figure 8.2: Frequency response of the open loop system.

Table 8.2: Modes of the Reference System

Real Imaginary Frequency Damping

a -1.0856e-01 ±8.5272e-01 8.5960e-01 1.2629e-01

b -3.4723e-02 ±7.0339e+00 7.0340e+00 4.9365e-03

c -3.0801e-02 ±7,7296e+0O 7.7297e±00 3.9848e-03

d -1.9902e-01 ±1.0458e+O1 1-0460e+O1 1.9026e-02

e -5. 1870e-01 ±2.5925e+O1 2.5930e±O1 2.0004e-02

f -8.2977e-01 ±4.6092e+O1 4.6100e+O1 1.7999e-02
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The choice of AP determines the family of strictly proper projective controllers which

retain Ap parameterized by P.. To select P., the approach of Section 6.5 is applied. Using

a gradient method, the Frobenius-Hankel norm of E 2(s) was minimized. The resulting

controller is given in Appendix E. The frequency response of the dynamic controller

associated with this choice of P. is given in Figure 8.4.

8.3 Evaluation of Design

The final step is to evaluate the design by examining the properties of the closed loop

system. The eigenvalues of the closed loop system are shown in Table 8.3. Note that

Ap = {a} has been retained. The disturbance attenuation of the full system is -y = -40 dB

as seen in Figure 8.5. Thus, the disturbance attenuation goal of the design has been met

using a second order controller. The stability margins of the closed loop system are [0, 40

dB] in gain and ±70° in phase. While these stability margins are smaller than those of the

reference system, they are still quite large. However, if these margins are not satisfactory,

a higher order controller may be considered.

To demonstrate the disturbance attenuation achieved by this design in the time domain,

the time response of the system to a disturbance impulse is computed. The open loop

response is given in Figure 8.6. Note the low damping of the low frequency mode. For the

system controlled by the design given above, the response is given in Figure 8.7. In this

case, the damping on the low frequency mode has increased dramatically.

A second order controller was also designed for the y-axis dynamics of the system in a

similar manner. The resulting closed loop system with decentralized controls was seen to

be stable and retain the desired disturbance attenuation properties.

Thus, the disturbance attenuation of a flexible system modeled with a fortieth-order

model has been improved significantly using two second order, decentralized controllers.

The use of two second order controllers is quite an improvement over the full fortieth order

controller. Thus, the projective controls method with FH optimization has proven to be

an effective design method in a realistic problem setting.
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I Table 8.3: Modes of the Closed Loop System

Real Imaginary Frequency Damping

-2.5695e-01 ±7.7933e-01 8.2059e-01 3.1313e-01

-1 .0856e-01 ±8.5272e-01 8.5960e-01 1 .2629e-01I-3.4630e-02 ±7.0333e+00 7.0334e+004O 27e0

-3.0564e-02 ±7.7291e±00 7.7292e+00 3.9543e-03I-1 .8496e-01 ±1 .0423e+O1 1 .0425e+O 1 1.74e0

-5.3975e-0 1 ±2.5960e+O1 2.5965e+O 1 2.0787e-02U-8. 1569e-01 ±4.6082e+01 4.6089e+O1 1.79e0

d e

c

b

eIS
-150-

I17 1___ I_______30 1 10 10 2

frequency (radians/second)

I Figure 8.5: Frequency response of the closed loop system.
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CHAPTER 9

CONCLUSIONSI
This work has developed methods of designing low order, decentralized controllers

I which give robust performance in the closed loop system.

The robustness properties of the Rc,, norm make it an attractive choice for computing

low order optimal controllers. However, no methods previously existed to solve such a

problem. Necessary conditions for the solution of this problem shown in this work, however,

still do not lead to effective methods for the computation of such controllers.

3 The FH norm, however, was shown to be a suitable norm for use in the design of low

order controllers based on its ability to quantify both robustness and performance issues.

3 In addition, it poses a much simpler computational problem which makes it suitable for

application to complex problems.

3 The FH optimization method was used in the design of low order controllers -an two

distinct ways. First, necessary conditions for FH optimal controllers were derived. This

3 led to an optimization algorithm which was demonstrated through an example. In the

second approach, projective controls were used in the first phase of the design. However,

3 the projective controllers contain free parameters which influence the residual dynamics of

the closed loop system. FH optimization was then used to choose the free parameters to

I match the closed loop system as closely as possible with the reference system.

As an example of this approach, a design example was shown which used projective

controls and FH optimization to determine the control of a flexible structure.

3 With the recent development of new methods to solve the full order " problem, the

problem of determining full order, centralized controllers can be considered to be close to a

3 solved problem. However, the situation is far different for the case of low order controllers.

The problem of determining the best low order controller is still an open problem. A

3 variety of techniques are necessary to adequately design such controllers. This work has

shown some new ways to attack this problem.I
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APPENDIX A

PROPERTIES OF THE TRACE FUNCTION

Definition 7 Given A E lZfxn

Tr A = E Ajj (A.1)

i=1

In the following, assume A E T/nx , B E R" ', C E TZ" x n .

Property 1

Tr BC = Tr CB. (A.2)

Property 2

TrA = TrAT. (A.3)

Property 3
n

TrA = E XI(A). (A.4)
j=1

Property 4

-Tr BTC = C. (A.5)OB
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APPENDIX BI
FH OPTIMAL STATE FEEDBACK CONTROLLERS

I
This theorem shows that the unconstrained FH optimal controller is not equivalent to

a static state feedback controller as is the case for an LQ controller.

3 Theorem 26
infG(s) < inf G(s). 

(B.1)
u=Kz~

Proof: The minimum principle is as follows: Let

3 = f(x,u,t), x(to) = Xo. (B.2)

Find the control u which minimizes the criteriontf
j = ?(x, u, t)dt + m(x(tf)). (B.3)

Define the Hamiltonian of the system as

N H l+ pTf.(B.4)

I Then the necessary conditions for a minimum are

3 5 - f(x,u,t), x(to)= Zo

P = - V. H, p(tj) = Vxf m (B.5)

3 0 = VH.

Now consider the LTI system,

zi = Ax + B2u, X(to) =X (B.6)

3 z = Cjx + D 12w (B.7)

y = C2x + D 21u. (B.S)

For the FH norm, define the following criterion

J = 2 Z tzdt" (B.9)

I
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Then,

H = It(x TCTCx + uTu) + pT(Ax + B 2u). (B.1O)

This yieldsm
= Ax + B 2u, X(to) = Xo

= -tCTclx - ATp, p(tf ) = 0 (B.11)m

0 = tu + B p.

Thus, the optimal control is

u = -t-BTp. (B.12)

To convert the control to feedback format, assume p(t) has the form,

p(t) = tP(t)X(t). (B.13) 3
Then,

Th= Px + tP + tPi. 
(B.14) m

Substitution yields 3
-P= ATp+PA+CCI -PB 2BTp+IP. (B. 15)

Thus, the optimal control is given by

u = K(t)x (B.i1)

where m

K(t) = -BTp(t). (B.17) 3
Note that as t, -* -oc, (B.15) does not have a steady-state solution. To see this, assume

that a steady-state solution P exists. Then,

P =0=f -P C P=Ct (hIS) m

t

which is a contradiction. Thus, a steady-state solution does not exist.

This shows that the unconstrained FH optimal controller is in fact a time-varying

controller and not equivalent to a static state feedback controller. U

m
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APPENDIX C

I FH OPTIMIZATION ALGORITHM

The following is a Matlab macro which implements the algorithm for determining the

3 FH optimal controller.

% FH minimization*%
[nn,nz] = size(a); Enz,nm] =size(b);
Enr,nz] = size(c); Cnz,nq] = size(g);

Ens,nz] = size(h); Enp,nz] = size(Ac);

%Create extended systemIA =[a zeros(nn,np);zeros(np,nn) zeros(np)J;
B = Eb zeros(nn,np); zeros(np,nm) eye(np)J;
C =[c zeros(nr,np); zeros(np,nn) eye(np)];GI g eosn~q]
H = [g; zeros(np,nq)];

3D = Ed; zeros(np,nq)];
E =te zeros(ns,np)];
K = [Dc Cc;Bc Ac];

tol l e-6; err = 1; ep =.1;

yl [ ]; y2 = [];I while err>tol,
Ae = A + B*K*C;

Be = G + B*K*D;I Ce = H + E*K*C;
if any(real(eig(Ae))>O),

end disp('The system is unstable'),

3 %Calculate P and Q
P = lyap(Ae,Be*Be');
Q = lyap(Ae',Ce'*Ce);I 3J = trace(P*Q), yl = [yl J];

%Calculate L and MI L - lyap(Ae',Q);
M - lyap(Ae,P);

IdK aB'*(L*P+Q*M)*C' + B'*L*(G+B*K*D)*D' + E*HEKC**)
z - .1*norm(K)/norm(dK);
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if z < 1, ep = z

else, ep =1

end
K = K - ep*dK;

err = norm(dK), y2 = y2 err];

end
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APPENDIX DI
MODEL PARAMETERSI

The state space model which describes the cruciform structure of Figure 8.1 is given in

* [10];

3i = Ax + Bu + Gw

y = Cx + Fu + Dw

z = Hx

3 where,

A -2,L] [C QC IB B
1 0 0

0 -2Qo Q -Co,,

F 0 D=
C,,BL C,,DL

Q =diag[ .00025 .00001 .00083 .84942 .87782 2.2420 7.0290 7.2100 7.3300

3 7.6228 7.7327 7.9790 8.0682 8.5011 10.460 19.910 20.380 25.930

42.760 46.100 1,

I = diag[ .000 .000 .000 .005 .020 .005 .005 .005 .005 .005

.005 .020 .005 .016 .019 .020 .005 .020 .011 .018 ],

I
I
I
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7.144e - 07 8,829e - 13 1.41
7

e - 09 3.503e - 02

-6.267e - 14 -2.170e -08 3.80
7

e - 02 -6,82.1e - II

-1.651e - 11 1.380e - 11 -3.549e - 0
7  

-1.698e - 08

-1.564e - 02 2.570e - 07 -1.522e - 0
7  

-6.110e - 03

3.654e - 07 1.385e - 02 -7.738e - 03 1.342e - 07

1.043e - 04 - 1.007e - 04 1.393e - 05 7.851e - 06

1.7
7
0e - 02 4.871e - 04 -3.123e - 05 4.292e - 04

-2.549e - 03 -3.550e - 02 2.258e - 03 -5.985e - 05

-2.355e - 03 3.588e - 02 -2.273e - 03 -5.481 - 05

1.184e - 02 -2.322e - 02 1.449e - 03 2.
7

0
7

e - 04
BL = DL =

-1.925e - 02 -7.041e - 03 4.377e - 04 -4.396e - 04

-5.141e - 03 -7.797e - 02 4.806c - 03 -1.141e - 04

1.080e - 02 -2.006e - 02 1.234e - 03 2.386e - 04

-5.175e - 04 1.243e - 01 -7.523e - 03 -1.114e - 05

-1.916e - 01 -2.810e - 05 1616e - 06 -3.771e - 03

-7.178e - 05 1.127e - 01 -5.869e - 03 -1.181e - 06

-1.459e - 03 -5.674e - 03 2.946e - 04 -2.389e - 05

2.
7

16e - 01 -2.096e - 06 1.052e - 07 4.242e - 03

-9.120e - 06 -4.698e - 02 2.175e - 03 -1.293e - 07

-1.770e - 01 2.299e - 06 -1.050e - 07 -2.473e - 03

7.144e - 07 O00c + 00 -3.946e - 05 9.562e - 07 0.O00e + 00 -3.949e - 05

0.O00e + 00 -2.1TOe - 08 -4.200e - 05 0.O00e + 00 -. ,.435e - 08 -4.200e - 05

0.O00e + 00 0.O00e + 00 2.224e - 01 0.O00e + 00 0.O00e + 00 2.224e - 01

-1.564e - 02 2 5
7

0e - 07 -2.994e - 04 -1.710e - 02 3.323e - 0
7  2358e - 04

3.654e - 07 1.3b5e - 02 -3.112e - 04 3.967e - 07 1.778e - 02 2.829e - 04

1.043e - 04 - 1.007e - 04 -6.333e - 02 5.561e - 05 -6.235e - 05 7.231e - 01

1.7
7

0e 02 4.871e - 04 5.9
7

6e - 06 -2.657e -02 -4.646e - 04 -7.021e - 04

-2.549e - 03 -3.550e - 02 3.89
7

e - 04 2.387e - 03 3.4
7

9e - 02 -4.811e - 02

-2.355e - 03 3.588e -02 1.220e - 04 2.399P -03 -3.917e - 02 -1.555e - 02

= 1.184e - 02 -2.322e - 02 3.80f 04 -1.353e - 02 1.884e - 02 -5.238e - 02

-1.925e - 02 -7.041e - 03 
2 .500e - 05 2.752e - 02 5.873e - 03 -3.534e - 03

-5.141e - 03 -7.79Te - 02 -2.456e - 04 4.962e - 03 6.
735e - 02 3.689c - 02

1.080e - 02 -2.006e - 02 
3

.140e - 04 -1.078e - 02 1.835e - 02 -4.819e - 02

-5.1
7

5e - 04 1.243e - 01 3.521c - 05 5.377e -04 -8.600e - 02 -5.9
7

2e - 03

-1.916e - 01 -2.801e - 05 
3

.690e - 05 1.823e - 01 7.747e - 06 -9.256e - 03

-7.178e - 05 1.127c - 01 - 1.329e - 04 -3.891, - 05 2.829e - 01 9.886c - 02

-1.459e - 03 -5.674e - 03 -
2

.518e - 03 -8.886e - 04 -1.464e - 02 ! 93
7

e + 00

2.
7

16e - 01 -2.096e - 06 -9.656e - 06 2.962e - 01 -5.066e - 06 9.887e - 03

-9.120e - 06 -4.698e - 02 
7 .325e - 06 1.022e - 05 3.637e - 01 -6.133c - 03

-1.770e -Ol 2.299e - 06 -
9

.10le - 06 3.388e - 01 -2.373e - 05 5.256e - 03
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1.417c -09 3.503e -02 3.468e -23 1.432e - 09 3.502e - 02 I 663e - 17

3.807e - 02 0.000c + 00 -1.463e - 24 3.807e - 02 0.000e + 00 -2.187c - 18

-3.549e - 07 - 1.698e - 08 -1.329e - 26 -3.546e - 07 -1.673e - 08 1.440e - 21

-1.522e - 07 -6.110e - 03 2.384e - 15 4.119e - 06 2.222e - 01 3.055e - 09

- .738e - 03 1.342e - 07 -2.582e - 15 2.218e - 01 -5.184e - 06 -3.310e - 09

1.393, -05 7.851e - 06 4.611e - 18 -1.26
7
e -03 -1.195e - 03 5.910e - 12

-3.123e - 05 4.29 :e - 04 1.387e - 10 7.993e -05 1.406e - 02 1 778e - 04

2.258e - 03 -5.985e - 05 -3.414e - 11 7.045e - 03 4.497e - 03 -4.376e - 05

-2.273e - 03 -5.487e - 05 1.290e - 10 -3.180e - 02 3.039e - 03 1.653e - 04

CT 1.449e -03 2.707e - 04 9.995e - 12 - 1.190e - 03 -6.003e - 03 1.2
7

4e -05

4.377e - 04 -4.396e - 04 2." lOe - 10 1.456e - 03 - 1.779c - 02 2.58Se -04

4.806e - 03 -1.141e - 04 1.740e - 10 5.317e - 02 5.608e - 03 2.230e -04

1.234e - 03 2.386e - 04 8.846e - 11 2.096e - 02 -9.42 7
e - 03 1.134e - 04,

-7.523e -- ,3 -1.114e - 05 9.249e - 11 -7.424e - 02 1.910e - 04 1.185e - 04

1.616.! - 06 -3.771e - 03 - 1.110ce-11 4.036e - 05 -1.311e - 01 -1.423e -05

-5.869e - 03 -1.18le - 06 -7.828e - 12 1.680e - 01 -2.111e - 05 - 1.002e - 05

2.946e -04 -2.389e - 05 4.332e - 13 -9.449c - 03 -3.073e - 04 5.543e -07

1.052e -07 4.242e - 03 -1.050e - 11 -6.058e - 06 -1.686e - 01 -1.343e -05

2.1
7

5e -03 - 1.293e - 07 -5.344e - 11 1.906e -0 1 -3.141e -06 -6.801e -053 -1.050e - 07 -2.473e - 03 -8.271e - I1 -1.476e -05 -1.
7
63e -01 -1.051e -04

The cruciform model is decentralized into x-axis and y-axis systems as shown in Table

I D.1 [25).

3 Tab!e D.1: GHR Decentralized Model Results.

Model Inputs Outputs

x-axis Utl -W2  z2 ,z 5 ,?l,y 4,Y8 , yl1

y-axis U2,w1I Z Z.4, Y2,Y5, Y7, Y10

I
I
U
I
U
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APPENDIX E

CONTROLLER PARAMETERS

The decentralized second order controllers which are applied to the cruciform structure

are given in the following form:

+ H G 0

Ko 0

The x-axis controller is given by

-5.5653e - 01 9.6470e - 01 -8.2991e - 01 -9.0911e - 01 3.2908e - 01 -1.1968e + 01 1
C (s) = -4.3526e -01 -2.214

7
e -01 -1.1300e + 00 -1.23

8
9e + 00 -3.1525e -01 1.1474e -t 01

-1.7181e + 00 -1.28 7
4e + 00 0.0000C + 00 0.0000e + 00 0.0000e + 00 0.0000e + 00

The y-axis controller is given by

-8.8423e - 01 5.5382e - 01 -3.6051e - 01 -4.8280e - 01 9.2533e - 01 -2.6680e + 0 1
CY(s) -9.4732e - 01 -1.3498e - 01 1.8310e + 00 2.53

7
1e + 00 

9
.2186e - 02 -2.2745e + 00

-9.7789e - 02 1.7635e + 00 0.0000e + 00 0.0000C + 00 0.0000e + 00 0.0000e + 00
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